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THE M/G/1 QUEUE WITH INSTANTANEOUS,
BERNOULLT FEEDBACK

1.0 Introduction. 1In this paper we are concerned with several random pro-
cesses that occur within the class of M/G/1 queues with instantaneous feed-
back in which the feedback decision process is a Bernoulli process. Such
systems in the case G=M are the simplest, non-trivial examples of Jackson
networks [5]. Indeed, they are so simple that they are usually dismissed
from consideration in queueing network theory as being obvious. We will show
that far from being obvious they exhibit some important, unexpected properties
whose implications raise some interesting questions about Jackson networks
and their application.

In particular, Jackson [5] observed that in his networks the vector
valued queue length process behaved as if the component processes werc in-
dependent, M/M/1 systems. Since those results appeared there has developed
a mythology to explain them. These arguments usually rest on three sets of
results that are well known in random point process theory: superposition,
thinning, and stretching. By examining the network flow, it will be shown
that the application of these results are inappropriate to queueing network
with instantaneous, Bernoulli feedback. Their flows are considerably more
complicated than one expects based on such arguments and one is left to

ponder what the Jackson results mean to queueing network decomposition. -

I.1  The Problem and Notation. We assume the usual apparatus of M/G/1 queues

with unlimited waiting capacity. The new idea is that a unit which has received
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service departs with probability q and returns for more service with probabil-
ity p. ptq=1.

Without loss of generality for the processes studied here the
returning customer can be put anywhere in the queue.
To

{T

Poisson process with parameter A>0.
. T R IR

establish notation it is assumed that the arrival process is a

The arrival epochs are the elements of
Service times are i.i.d.

random variables,

5

with
n
Pr|{S < €
[ n ]

= H(t), >0,

E[S ] < ~ 00y,
n

The arrival process and service times are independent processes.
Service completions occur at TO<T =

15Ty called the output epochs.

0, if the n-th output departs
Yo
n

1, if the n-th output feeds back.
} is a Bernoulli process.

Elements of the subset {tn}CZ{Tnf are called the departure epochs and are
the times at which an output leaves the system.

The elements of the subset
{1 }CZ{Tn} are called the feedback epochs and are the times at which an output
returns to the queue. (tn}L){T }

n

The times T' are the times at which a unit enters the queue. 1Tg: is
called the input process. {T;} = {Tn}\J{rn}.

There are six queue length processes to be studied.
related as will be

shown. Thus,

They are closely
let

ey =

S

the queue length (number

at t.

in t.h(' syste )
r} en () ([l)-—( ( -0) () (ll)—-( ('1 '-O - () (ll): )('1 .0 ’ Q
en, 1 ) t ) 2 ) )y 3 (\ ) <

S

{

(n)’_()(tn*“) are respec-



T
tively the embedded queue lenpths at arrival epochs, input epochs, output
2 5 I 3 i

epochs, departure epochs.

2.0 Queue Length Processes. The queue lengths listed in 1.1 are closely

: ¥ A T 2! ;
related. The steady state versions of ~Q3(n); and {Q,(n)} are of primary
4

concern. They are studied in sections 2.1 and 2.2 separately. They
are related to the other processes in section 2.3. The important special

case for G=M is then studied in 2.4.

+ 3
2okl U)a(n)} Process. There are several ways to study this process.
The following appears to be direct, correct and may help explain why these
feedback problems have received such little attention in the queueing litera-
ture. First it is clear that
Aty
t RSO e @ (n=1)=0
n-1 n’ 4 '

+
+ + X i | =)
n-1 [n Sn’ i QA(H i

Here Sé is the total service time consumed between the (n-1)-st and n-th

departure. I1 is the idle time following t P For the M/G/1 queues :I‘
r 5 1

are i.i.d. random variables that are exponentially distributed with parameter

Without loss of generality, since customers are indistinguisable,

S! = 8. R S e 5y for. every n.
n 1 y m :

m is the number of services performed between the n-th and (n-1)-st departure.
Since {Y } is a Bernoulli process, m is geometrically distributed and it
n

follows that {S§'} is a sequence of i.i.d. random variables. Thus the Laplace
n

transform of the distribution function of §8' is easily found to be
n
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G*(s) = qH*(s)/[1-pH*(s)].

Using standard embedded Markov chain methods one finds that the pro-
bability generating function of ' the limiting probability distributions

+
of {Qé(n)}, is given by

M'(0) (z-1)G*(A-)z)

(2.1.1) g'(z) = 2—GE(h—-Az)
and
(2.1.2) P b e et

Since (2.1.1) and (2.1.2) are of the form one finds for M/G/1 queues
without feedback, by properly adjusting the mean service time, it can be
argued that the queue length process embedded at departure points for queues
with and without feedback are asymptotically identically distributed. In

fact, this result is true for' all n.

=g 2
22 The {Qj(n)} Process. This is the queue length process embedded at
. ; s ; :
output points. Since itn}CZ{an {Q,(n)} is a process on a courser grid than
4
o 5 . , . e 3
1Qs(n)'. Since one is ultimately to be concerned with both fQ3(n)} and

(T -T

- : 4 -
i n—]}' the following study is for the joint process {Qz(n)‘ T =1

n n-]

: : At A ;
The marginal results for 1Q5(n)} then will be ecasy to determine.

- v + " BN .
Theorem 2.2.1. The process 1Q,‘(n) s =1 | I is a Markov Renewal process
e e 5

+ |+
with transition functions A(i,],x):PrlQ*(n)=j. Tn—T‘ ];xiQ3(n—1)=I] where
i=




f
0 > J S A= ]9
(X -Ay : o
] ge anly), 1#0, j=i-1,
0
™ ﬂff)}fé M n s AN antey . 190, § > 1
a G-1 4 oS iaeny e e '
A(i,j,}\’) = <
X A ( _') (‘\,);—1 —Yoxr ary
Jr [1-e ° L ] "(",-_1 S T e - 2] dA(y), i=0, j 0,
0 it l
i X s e oy -X Ay
‘fO [1-e k% 'V)] e Y qdH(y), 1 =3 = 0
Proof.
“+
S R = > (
Sn, L QB(n 1) )
1n-ln—l 4

I #8 , if Q. (n-1) = O
n n 3

. : . g ’ : ; . e .
where l) is the exponentially distributed idle time preceeding 51 if l!v‘kn—n):l).
I : 1
The result then follows directly using arguments as in [4].
If x»<, A(i,j,x) »A(i,j) the one step transition probability for the
t i . 3
'(_)‘(n): process. Then using standard embedded Markov chain results one can

show that the probability generating function g(z) for the limiting probabilities

1N(j) are given by

1(0) (z-1) [pzH* (A-rz)+qH* (A-Az) ]

8(z) 7.—sz*(«—E"x)‘—ql!*(.‘«—-‘*z)

and

n(0) = q-rE[S_].
n

2.3 Other Queue Length Processes. The queue length, limiting probabilitics
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for the three queueing processes {Qo(t)}, {Qi(n)}. {Q;(n)} now follow from a
theorem found in Cooper [3]. From this it follows that {Qo(t)}; {QI(n)}:
{QZ(n)} are asymptotically identically distributed and {Q;(n)}; {Q;(n)} are
asymptotically identically distributed. Clearly, {QZ(n)} and {Q;(n)} are not
asymptotically, identically distributed.

The difference can be explained as follows. Any output must be either
a feedback or a departure, if the queue length is j after an output then
either there has been a feedback and the queue length is now j, or there has
been a departure and the queue length is now j.

Thus 11(j)=ql'(j) + p(Pr(queue length after a feedback is j)). Since a
queue length of j after a feedback, and a queue length of j-1 after a depar-
ture, both correspond to a queue length of j before the output, and so have

the same probability

git* (1) # pl' (j~1) 3 2 1,

m(3)

1n(0)

ql' (0).

From the above argument and Cooper's theorem it can be seen that the pro-
bability of j in the queue just after an input (i.e., either a feedback or
and arrival), is given by II'(j-1).

For the M/M/1 feedback queue, where

y Xy s Nood= I
Y (j=1) = (1 =--) ()] : B i e
uq~ uq

this result was pointed out in Burke [2].

2.4 The M/M/1 Case. If one assumes that the service time distribution is

H(t) = 1 - e Mt s, €20,
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3 —

! some further classification is possible here. From the results of Jackson

(5%,
i h A ] L
T = (1- —) . R0 D
) ( qu)(qu) ]
- From (2.1.1) and (2.1.2) one obtains
ne) = q(1 - —LJ
q qu’ *
A AL j-1 A :
E G = G = =) ) = g
() ( qu)(qu) (p u) h|

3.0 Flow Processes. To further clarify the problems here, it is useful

to study the flow processes in this system. There are five processes of

interest: the arrival process; the input process; the output process; the

departure process; and the feedback process.

There has been some questions since the publication of the Jackson
results concerning the interpretation of his results [1], [2]. In his paper
Jackson showed that for his networks the joinct limiting probability for the
vector or queue lengths at each server could be factored into limiting pro-
babilities for the queue length at each server. This implies that the queue
lengths are independent in the limit. The remarkable result was that the
marginal limiting probabilities were precisely those of an M/M/1 queue.
Burke [2], has argued that the Jackson results are surprising. Burke's
argument is bascd on showing that the input to a single server queue with
feedback is not Poisson because the interinput times (our {T;}) are not ex-

» ponentially distributed. (2] gives the precise result

-ut

Pr[T; sl e T QU4 TAt _ pue t z 0.

=X p=r
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In this section we will study some of the flows in this network and show
indeed the Jackson results are surprising. A conjecture based on these results

will be given in section 4.

3.1 Departures. The departure process {tn} can be studied as in Disney,
Farrell, deMorais [4] upon using the mapping in section 2.1. Thus we know
that this departure process is a renewal process and is a Poisson process when-
ever {Sn} is a renewal process with exponential distribution. This is the
Jackson case. So we conclude that the departure process from the Jackson
network is a Poisson process.

From the results of section 2.1 there is a possibility that the
departure process is Poisson even if Sn is not exponentially distributed.
The result that is needed for the results of [4] to follow is that S; be
exponentially distributed (since it is known that {Sé} is a sequence mutually

independent, identically distributed random variables).

Theorem 3.1.1. If H(t) has a Laplace transform then the departure process

from the M/G/1 queue with feedback is a Poisson process if and only if Sn

is exponentially distributed for every n.

Proof. From section 2.1 we have G*(s), the Laplace transform of the

distribution function H(t) is given by

hiay = BTLB)
G*(s) = L-pH*(3)

a s
Thus if GC*(s) = ool Sé is exponentially distributed with a parameter a

and the departure process will be a Poisson process from [4]. Thus, if

a_ _ qH*(s)
a+s

]—ph}ks)
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S; is exponentially distributed. But the only solution here is

o) = o0

which implies H(t) is exponential.

3.2 Outputs and Inputs. From section 2.2 it is clear that the output
process is a Markov Renewal process whose distributions are given by A(i,j,x).

From these, the following results are obtained.

Theorem 3.2.1. The output process {Tn—Tn_l} is a renewal process if and only

if q=1 and H(t) =1 - & &,

=HE
Proof. If q=1 and H(t) =1l-e k , the result follows from [4]. Those arguments can be

modified in a trivial way to show that equations (3.1) and (3.2) of that paper
are not satisfied jointly for any q#1. Thus the output process is not renewal.

To be more specific, theorem 3.2.1 can be particularized as

Corollary 3.2.2. The output process {Tn—Tn_l} for the M/M/1 queue is a

Poisson process if and only if g=1.

Proof. Define

F(x) = Pr(T -T ).
W) [ n  n=1L = |
F(x) = lIAU where U is the column vectors all of whose elements are 1, 1l is
e g o : . . ' rent
the vector of limiting probabilities given in section 2.3 for \Qi(n) and A
is the matrix of A(i,j). Then from theorem 2.2.1 one obtains after some
easy manipulations:
X
el . A =A(x-y \
(18 Y F(x) = (q ~ U) f [1-e ( ’)] dlH(y) = Up+ =) H{x)
0 e
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for any M/G/1 queue with instantaneous, Bernoulli feedback.

For H(y) = 1 —e_“y, it follows that

(3.2.2) Pl = 1 = fu&_’% e'“‘-f}‘; s HE o g

Thus single intervals are not exponentially distributed and the output process
is not a Poisson process unless q=1.

Formula 3.2.2 was previously found by Burke [2] for the distribution of
times between inputs. Whether this implies that the output random process
and input random process are equivalent processes or not is not known. One

conjectures that they are. The distribution form from (3.2.2) does yield

Corollary 3.2.3. The input process to the M/M/1 queue is not a renewal

process unless q=1.

Proof. Assume that this input process is a renewal process with intervals

distributed as in formula (3.2.2). From Cooper [3], the queue length process
e S o 3 " g : g

(Qz(n)k and {Qg(n)} should then be identically, asymptotically distributed as

given in section 2.3. Using standard methods of studying G1/M/1 queues one

finds that the unique root to the standard secular equation, which lies in

(0,1) is given by

2 5 L2
a = [(2utr) - [2u=))" = 4pu”]  1/2u.
+ -
It then follows that {Qj(n)} and {Qz(n)} are asymptotically identically dis-
tributed if and only if q=1 (or p=0). Thus the input process is not a renewal
process.

It seems obvious that the arrival process and feedback process are not

independent processes. One can show:




— e
Corollary 3.2.4. Either the feedback process is not a Poisson process or

the arrival process and feedback process are not independent processes.

Proof. This result follows immediately from Burke's result on the distri-
bution of the interinput intervals. For if the feedback process is both
independent of the arrival process and is itself a Poisson process, the

input process is Poisson. Thus Burke's result contradicts the assumption.

3.3 Feedback

The feedback stream seems to be quite difficult to work with.

From the previous section we know that it is either not independent of the
arrival stream or not a Poisson stream. We conjecture that both of these
conditions prevail. 1If so then the known superposition theorems cannot be
used to study feedbacks as part of the arrival, feedback, input processes.
Treating the feedback stream as a filtered version of the Markov renewal
output stream appears to be quite difficult. The only result for this feed-
back stream that we have is given by the following analysis.

Consider the probability that a sequence of n service times takes less
than t, given that we start with i customers, Fz(t). Let Hn(t) be the distri-

bution function of the sum of n service times. Either the first busy period

terminates with one of these customers, or it does not. Thus
n s T ) ( )m-i m n-m
« r -AZ rZ -
F,(t) = e - dH (z)H (t-2z)
i PN (m-1) !

+ Prin-th customer is served during the first busy period anc
before time t],

for n > 1.

, o (T -
Otherwise, Pi (t) = Prn-th customer served by time t|
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Let fi(t) be the probability that a feedback occurs before time t, given the
queue length just after a feedback was 1i.

Then

o t o m-1i
_ -1 n © © C g =Xz {Xz) m n-m
g6ty = T pg - [ @)~ | Y[ et dn T (2)HT (t-z)
: n=1 = n=i+l m=i 4 = (m-1)!
el t tE-u 5 n-i
L5 5 e
5 Z f f qn % e (r(x—__‘ll;' dHn(u) re A=) fi(t~u—z)

4.0 Conclusions. There are several conjectures that one can pose concern-
ing Jackson networks based on the results of this paper. First with respect
to queue length, busy period and departure processes if one adopts the "out-
siders" view [3] these processes appear to be those generated by an M/G/1
queue without feedback. However, if one adopts the "insiders'" view the queue

length process does not appear to behave as seen by the "outsider".

Flow processes in this network cannot be explained by appeal to super-
position, departure and random deletion results for Poisson processes. The
requisite independence assumptions both within and between streams of events
are not satisfied here. Thus one cannot assume that these queues which act

"as if" they were M/M/1 queues to the "outsider'" are M/M/1 queues to the
"insider". In particular, this hints at the possibility that in these net-
works, cven as simple as Jackson networks, any attempt to decompose the net-
work into independent M/M/1 queues is doomed to failure. This decomposition
must account for the internal flows and these not only appear to be non-Poisson,
they appear to be non-renewal and are dependent on each other.

0 for

" . YR 40
We conjecture, based on current papers in process, that if Pyg >

some i and n-0, in the Jackson structure, then flow along any path that returns




gt
a customer to a node that he has previously visited is not only not Poisson
it is not renewal. Thus, if Jackson networks have loops, direct feedback as
in this paper being the simplest example, they cannot be decomposed into sub-
networks of simple M/M/1 servers.
In particular, these results probably imply that a node-by-node analysis
of waiting times, depending as they do on the "insiders' view is not valid if
one simply uses M/M/1 results at each server.
That these queues with feedback are far from trivial is clear. Considerably
more research is needed to thoroughly understand what effect feedback has on

queueing networks.
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[3)
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